Core API¶
Core SLAF functionality including SLAFArray and query optimization.
SLAFArray¶
slaf.core.slaf.SLAFArray
¶
High-performance single-cell data storage and querying format.
SLAFArray provides SQL-native access to single-cell data with lazy evaluation. Data is stored in a relational format with three main tables: cells, genes, and expression. The class enables direct SQL queries, efficient filtering, and seamless integration with the single-cell analysis ecosystem.
Key Features
- SQL-native querying with Polars integration
- Lazy evaluation for memory efficiency
- Direct access to cell and gene metadata
- High-performance storage with Lance format
- Scanpy/AnnData compatibility
Examples:
>>> # Load a SLAF dataset
>>> slaf_array = SLAFArray("path/to/data.slaf")
>>> print(f"Dataset shape: {slaf_array.shape}")
Dataset shape: (1000, 20000)
>>> # Access metadata
>>> print(f"Cell metadata columns: {list(slaf_array.obs.columns)}")
Cell metadata columns: ['cell_type', 'total_counts', 'batch']
>>> print(f"Gene metadata columns: {list(slaf_array.var.columns)}")
Gene metadata columns: ['gene_type', 'chromosome']
>>> # Filter cells by metadata
>>> t_cells = slaf_array.filter_cells(cell_type="T cells")
>>> print(f"Found {len(t_cells)} T cells")
Found 250 T cells
>>> # Execute SQL query
>>> results = slaf_array.query("
... SELECT cell_type, AVG(total_counts) as avg_counts
... FROM cells
... GROUP BY cell_type
... ORDER BY avg_counts DESC
... ")
>>> print(results)
cell_type avg_counts
0 T cells 1250.5
1 B cells 1100.2
2 Monocytes 950.8
>>> # Get expression data
>>> expression = slaf_array.get_cell_expression(["cell_001", "cell_002"])
>>> print(f"Expression matrix shape: {expression.shape}")
Expression matrix shape: (2, 20000)
Source code in slaf/core/slaf.py
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 |
|
Attributes¶
obs
property
¶
Cell metadata (lazy loaded)
var
property
¶
Gene metadata (lazy loaded)
Functions¶
__init__(slaf_path: str | Path)
¶
Initialize SLAF array from a SLAF dataset directory.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
slaf_path | str | Path | Path to SLAF directory containing config.json and .lance files. The directory should contain the dataset configuration and Lance tables. | required |
Raises:
Type | Description |
---|---|
FileNotFoundError | If the SLAF config file is not found at the specified path. |
ValueError | If the config file is invalid or missing required tables. |
KeyError | If required configuration keys are missing. |
Examples:
>>> # Load from local directory
>>> slaf_array = SLAFArray("./data/pbmc3k.slaf")
>>> print(f"Loaded dataset: {slaf_array.shape}")
Loaded dataset: (2700, 32738)
>>> # Load from cloud storage
>>> slaf_array = SLAFArray("s3://bucket/data.slaf")
>>> print(f"Cloud dataset: {slaf_array.shape}")
Cloud dataset: (5000, 25000)
>>> # Error handling for missing directory
>>> try:
... slaf_array = SLAFArray("nonexistent/path")
... except FileNotFoundError as e:
... print(f"Error: {e}")
Error: SLAF config not found at nonexistent/path/config.json
Source code in slaf/core/slaf.py
is_metadata_ready() -> bool
¶
is_metadata_loading() -> bool
¶
wait_for_metadata(timeout: float = None)
¶
Wait for metadata to be loaded (with optional timeout)
Source code in slaf/core/slaf.py
query(sql: str) -> pl.DataFrame
¶
Execute SQL query on the SLAF dataset.
Executes SQL queries directly on the underlying Lance tables using Polars. The query can reference three tables: 'cells', 'genes', and 'expression'. This enables complex aggregations, joins, and filtering operations.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sql | str | SQL query string to execute. Can reference tables: cells, genes, expression. Supports standard SQL operations including WHERE, GROUP BY, ORDER BY, etc. | required |
Returns:
Type | Description |
---|---|
DataFrame | Polars DataFrame containing the query results. |
Raises:
Type | Description |
---|---|
ValueError | If the SQL query is malformed or references non-existent tables. |
RuntimeError | If the query execution fails. |
Examples:
>>> # Basic query to count cells
>>> slaf_array = SLAFArray("path/to/data.slaf")
>>> result = slaf_array.query("SELECT COUNT(*) as total_cells FROM cells")
>>> print(f"Total cells: {result['total_cells'][0]}")
Total cells: 1000
>>> # Complex aggregation query
>>> result = slaf_array.query("
... SELECT cell_type,
... COUNT(*) as cell_count,
... AVG(total_counts) as avg_counts
... FROM cells
... WHERE total_counts > 500
... GROUP BY cell_type
... ORDER BY avg_counts DESC
... ")
>>> print(result)
shape: (3, 3)
┌────────────┬────────────┬────────────┐
│ cell_type ┆ cell_count ┆ avg_counts │
│ --- ┆ --- ┆ --- │
│ str ┆ i64 ┆ f64 │
╞════════════╪════════════╪════════════╡
│ T cells ┆ 250 ┆ 1250.5 │
│ B cells ┆ 200 ┆ 1100.2 │
│ Monocytes ┆ 150 ┆ 950.8 │
└────────────┴────────────┴────────────┘
>>> # Join query across tables
>>> result = slaf_array.query("
... SELECT c.cell_type, g.gene_type, AVG(e.value) as avg_expression
... FROM cells c
... JOIN expression e ON c.cell_integer_id = e.cell_integer_id
... JOIN genes g ON e.gene_integer_id = g.gene_integer_id
... WHERE c.cell_type = 'T cells'
... GROUP BY c.cell_type, g.gene_type
... ")
>>> print(f"Found {len(result)} expression patterns")
Found 5 expression patterns
Source code in slaf/core/slaf.py
filter_cells(**filters: Any) -> pl.DataFrame
¶
Filter cells based on metadata columns.
Provides a convenient interface for filtering cells using metadata columns. Supports exact matches, list values, and range queries with operators. Uses in-memory polars filtering when metadata is loaded, falls back to SQL otherwise.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
**filters | Any | Column name and filter value pairs. Supports: - Exact matches: cell_type="T cells" - List values: cell_type=["T cells", "B cells"] - Range queries: total_counts=">1000", total_counts="<=2000" - Multiple conditions: cell_type="T cells", total_counts=">500" | {} |
Returns:
Type | Description |
---|---|
DataFrame | Polars DataFrame containing filtered cell metadata. |
Raises:
Type | Description |
---|---|
ValueError | If a specified column is not found in cell metadata. |
TypeError | If filter values are of unsupported types. |
Examples:
>>> # Filter by cell type
>>> slaf_array = SLAFArray("path/to/data.slaf")
>>> t_cells = slaf_array.filter_cells(cell_type="T cells")
>>> print(f"Found {len(t_cells)} T cells")
Found 250 T cells
>>> # Filter by multiple criteria
>>> high_quality_t_cells = slaf_array.filter_cells(
... cell_type="T cells",
... total_counts=">1000",
... batch=["batch1", "batch2"]
... )
>>> print(f"Found {len(high_quality_t_cells)} high-quality T cells")
Found 180 high-quality T cells
>>> # Range query
>>> medium_counts = slaf_array.filter_cells(
... total_counts=">=500",
... total_counts="<=2000"
... )
>>> print(f"Found {len(medium_counts)} cells with medium counts")
Found 450 cells with medium counts
>>> # Error handling for invalid column
>>> try:
... result = slaf_array.filter_cells(invalid_column="value")
... except ValueError as e:
... print(f"Error: {e}")
Error: Column 'invalid_column' not found in cell metadata
Source code in slaf/core/slaf.py
filter_genes(**filters: Any) -> pl.DataFrame
¶
Filter genes based on metadata columns.
Provides a convenient interface for filtering genes using metadata columns. Supports exact matches, list values, and range queries with operators. Uses in-memory polars filtering when metadata is loaded, falls back to SQL otherwise.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
**filters | Any | Column name and filter value pairs. Supports: - Exact matches: gene_type="protein_coding" - List values: gene_type=["protein_coding", "lncRNA"] - Range queries: expression_mean=">5.0", expression_mean="<=10.0" - Multiple conditions: gene_type="protein_coding", chromosome="chr1" | {} |
Returns:
Type | Description |
---|---|
DataFrame | Polars DataFrame containing filtered gene metadata. |
Raises:
Type | Description |
---|---|
ValueError | If a specified column is not found in gene metadata. |
TypeError | If filter values are of unsupported types. |
Examples:
>>> # Filter by gene type
>>> slaf_array = SLAFArray("path/to/data.slaf")
>>> protein_coding = slaf_array.filter_genes(gene_type="protein_coding")
>>> print(f"Found {len(protein_coding)} protein-coding genes")
Found 15000 protein-coding genes
>>> # Filter by multiple criteria
>>> high_expr_proteins = slaf_array.filter_genes(
... gene_type="protein_coding",
... expression_mean=">5.0",
... chromosome=["chr1", "chr2"]
... )
>>> print(f"Found {len(high_expr_proteins)} high-expression protein genes")
Found 2500 high-expression protein genes
>>> # Range query for expression
>>> medium_expr = slaf_array.filter_genes(
... expression_mean=">=2.0",
... expression_mean="<=8.0"
... )
>>> print(f"Found {len(medium_expr)} genes with medium expression")
Found 8000 genes with medium expression
>>> # Error handling for invalid column
>>> try:
... result = slaf_array.filter_genes(invalid_column="value")
... except ValueError as e:
... print(f"Error: {e}")
Error: Column 'invalid_column' not found in gene metadata
Source code in slaf/core/slaf.py
get_cell_expression(cell_ids: str | list[str]) -> pl.DataFrame
¶
Get expression data for specific cells using Lance take() and Polars.
Retrieves expression data for specified cells using efficient Lance row access and Polars for in-memory operations. This method provides significant performance improvements over SQL-based queries.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cell_ids | str | list[str] | Single cell ID (string) or list of cell IDs to retrieve. Can be string identifiers or integer IDs. | required |
Returns:
Type | Description |
---|---|
DataFrame | Polars DataFrame containing expression data for the specified cells. |
DataFrame | Columns include cell_id, gene_id, and expression values. |
Raises:
Type | Description |
---|---|
ValueError | If any cell ID is not found in the dataset. |
RuntimeError | If the query execution fails. |
Examples:
>>> # Get expression for a single cell
>>> slaf_array = SLAFArray("path/to/data.slaf")
>>> expression = slaf_array.get_cell_expression("cell_001")
>>> print(f"Expression data shape: {expression.shape}")
Expression data shape: (15000, 3)
>>> # Get expression for multiple cells
>>> expression = slaf_array.get_cell_expression(["cell_001", "cell_002", "cell_003"])
>>> print(f"Expression data shape: {expression.shape}")
Expression data shape: (45000, 3)
>>> # Error handling for invalid cell ID
>>> try:
... expression = slaf_array.get_cell_expression("invalid_cell")
... except ValueError as e:
... print(f"Error: {e}")
Error: cell ID 'invalid_cell' not found
Source code in slaf/core/slaf.py
get_gene_expression(gene_ids: str | list[str]) -> pl.DataFrame
¶
Get gene expression data for specified genes.
This method uses QueryOptimizer to generate optimal SQL queries based on the gene ID distribution (consecutive ranges use BETWEEN, scattered values use IN).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
gene_ids | str | list[str] | Gene ID(s) to query. Can be a single gene ID string or list of gene IDs. | required |
Returns:
Type | Description |
---|---|
DataFrame | Polars DataFrame containing expression data for the specified genes. |
DataFrame | Columns include cell_id, gene_id, and expression values. |
Raises:
Type | Description |
---|---|
ValueError | If any gene ID is not found in the dataset. |
RuntimeError | If the query execution fails. |
Examples:
>>> # Get expression for a single gene
>>> slaf_array = SLAFArray("path/to/data.slaf")
>>> expression = slaf_array.get_gene_expression("GENE1")
Source code in slaf/core/slaf.py
get_submatrix(cell_selector: Any | None = None, gene_selector: Any | None = None) -> pl.DataFrame
¶
Get expression data using cell/gene selectors with Lance take() and Polars.
Retrieves a subset of expression data based on cell and gene selectors. The selectors can be slices, lists, boolean masks, or None for all cells/genes. This method provides a flexible interface for subsetting expression data with significant performance improvements over SQL-based queries.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cell_selector | Any | None | Cell selector for subsetting. Can be: - None: Include all cells - slice: e.g., slice(0, 100) for first 100 cells - list: e.g., [0, 5, 10] for specific cell indices - boolean mask: e.g., [True, False, True, ...] for boolean selection | None |
gene_selector | Any | None | Gene selector for subsetting. Can be: - None: Include all genes - slice: e.g., slice(0, 5000) for first 5000 genes - list: e.g., [0, 100, 200] for specific gene indices - boolean mask: e.g., [True, False, True, ...] for boolean selection | None |
Returns:
Type | Description |
---|---|
DataFrame | Polars DataFrame containing expression data for the selected subset. |
DataFrame | Columns include cell_id, gene_id, and expression values. |
Raises:
Type | Description |
---|---|
ValueError | If selectors are invalid or out of bounds. |
RuntimeError | If the query execution fails. |
Examples:
>>> # Get first 100 cells and first 5000 genes
>>> slaf_array = SLAFArray("path/to/data.slaf")
>>> submatrix = slaf_array.get_submatrix(
... cell_selector=slice(0, 100),
... gene_selector=slice(0, 5000)
... )
>>> print(f"Submatrix shape: {submatrix.shape}")
Submatrix shape: (500000, 3)
>>> # Get specific cells and genes
>>> submatrix = slaf_array.get_submatrix(
... cell_selector=[0, 5, 10, 15],
... gene_selector=[100, 200, 300]
... )
>>> print(f"Submatrix shape: {submatrix.shape}")
Submatrix shape: (12, 3)
>>> # Get all cells for specific genes
>>> submatrix = slaf_array.get_submatrix(
... gene_selector=[0, 100, 200, 300, 400]
... )
>>> print(f"Submatrix shape: {submatrix.shape}")
Submatrix shape: (5000, 3)
>>> # Error handling for invalid selector
>>> try:
... submatrix = slaf_array.get_submatrix(
... cell_selector=slice(0, 1000000) # Out of bounds
... )
... except ValueError as e:
... print(f"Error: {e}")
Error: Cell selector out of bounds
Source code in slaf/core/slaf.py
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 |
|
info()
¶
Print information about the SLAF dataset
Source code in slaf/core/slaf.py
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 |
|